Abstract

In this article, we have reported the synthesis and physicochemical characterization of a novel l-glycine amino acid derived cholesterol based surface active ionic liquid (SAIL). This SAIL has been explored for the preparation of ionic liquid (IL)-in-oil microemulsions and vesicles. The formation of IL-in-oil microemulsion is characterized by construction of a ternary phase diagram, dynamic light scattering (DLS) measurement, proton nuclear magnetic resonance (1H NMR) study, fluorescence measurement using coumarin 480 (C-480) as a molecular probe, and also by recording the diffusion behavior of the molecular probe rhodamine 6G (R6G) in microemulsion droplets through the fluorescence correlation spectroscopy (FCS) technique. Similarly, the spontaneous vesicle formation from the SAIL in water has been established using DLS, transmission electron microscopy (TEM), cryogenic-transmission electron microscopy (cryo-TEM), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), FCS, and fluorescence lifetime imaging microscopy (FLIM) measurements. These aggregates may potentially serve as good biomimicking models and possible drug carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.