Abstract

Cholesterol-rich membrane domains, which contain the scaffold protein caveolin-1 (Cav-1) (caveolae), represent an important structural element involved in endothelial signal transduction. The present study was designed to investigate the role of these signaling platforms in the generation of endothelial-derived hyperpolarizing factor (EDHF). Caveolae were disrupted by cholesterol depletion with methyl-beta-cyclodextrin (MbetaCD 10 mM). MbetaCD-induced modulation of non-nitric oxide-/non-prostanoid-dependent (EDHF)-mediated vasorelaxation was studied in pig coronary arteries. Effects of MbetaCD on endothelial Ca(2+) signaling and phospholipase A(2) (cPLA(2)) activity were determined using fura-2 imaging and measurement of [(3)H]-arachidonate mobilization in cultured pig aortic endothelial cells (PAEC). Cellular localization of caveolin-1 and phospholipase A(2) was investigated by cell fractionation, and interaction of cPLA(2) with caveolin-1 was tested by immunoprecipitation experiments. MbetaCD inhibited EDHF-mediated relaxations of pig coronary arteries induced by bradykinin (100 nM) or ionomycin (300 nM) but not relaxations induced by the NO donor DEA/NO (1 microM). Exposure of arteries to cholesterol-saturated MbetaCD failed to affect EDHF-mediated relaxations. Cholesterol depletion with MbetaCD did not affect bradykinin or ionomycin-induced Ca(2+) signaling in pig aortic endothelial cells, but was associated with enhanced basal and reduced Ca(2+)-dependent release of arachidonic acid (AA). Cell fractionation experiments indicated targeting of cPLA(2) to low density, caveolin-1 rich membranes and immunoprecipitation experiments demonstrated association of phospholipase A(2) with the scaffold protein of caveolae, caveolin-1. Cholesterol depletion with MbetaCD did not disrupt the interaction between cPLA(2) and caveolin-1 but prevented targeting of cPLA(2) to low density membranes. Exogenous supplementation of arachidonic acid after cholesterol depletion partially restored EHDF responses in pig coronary arteries. The integrity of caveolin-1-containing membrane microdomains is prerequisite for arachidonic acid recruitment and EDHF signaling in porcine arteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.