Abstract
Bile secretion depends on the vectorial transport of solutes from blood to bile and involves three different pathways: transcellular pathways mediated by transport proteins distributed asymmetrically in the basolateral and canalicular plasma membrane and by transcytotic vesicles, and a paracellular pathway allowing selective diffusion through tight junctions. All three pathways are impaired differentially by extrahepatic (bile duct ligation) or intrahepatic (ethinyloestradiol) cholestasis. Ethinyloestradiol treatment leads to tight junctional defects that are less severe than those induced by bile duct ligation. Junctional impairment is reflected functionally in increased permeability for horseradish peroxidase and structurally by decreased strand numbers and increased junctional length, but not by alterations at the level of the individual strands. The parallelism of physiological and morphological perturbations indicates a structure-function relationship in hepatocellular tight junctions. In addition, impaired functional integrity of tight junctions following bile duct ligation is reflected in a partial loss of hepatocellular surface polarity owing to redistribution of some, but not all, domain-specific plasma membrane antigens, which might mimic the behaviour of transport systems. After ethinyloestradiol treatment no alterations of surface polarity were observed. Thus, immunohistochemistry supports the view that ethinyloestradiol results in less severe impairment of the tight junctions than bile duct ligation. Finally, bile duct ligation, but not ethinyloestradiol, affects the transcytotic vesicular pathway; severe impairment of this is reflected in the absence of a late horseradish peroxidase peak in bile and also in the accumulation of pericanalicular vesicles that are immunopositive for canalicular membrane proteins and accessible for bulk phase endocytic markers.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.