Abstract

The Cholesky decomposition of a symmetric positive semidefinite matrix A is a useful tool for solving the related consistent system of linear equations or evaluating the action of a generalized inverse, especially when A is relatively large and sparse. To use the Cholesky decomposition effectively, it is necessary to identify reliably the positions of zero rows or columns of the factors and to choose these positions so that the nonsingular submatrix of A of the maximal rank is reasonably conditioned. The point of this note is to show how to exploit information about the kernel of A to accomplish both tasks. The results are illustrated by numerical experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call