Abstract

The cholera toxin B subunit (CTB) has been used as adjuvant to improve oral vaccine delivery in type 1 diabetes. The effect of CTB/peptide formulations on Ag-specific CD4(+) T cells has remained largely unexplored. Here, using tetramer analysis, we investigated how oral delivery of CTB fused to two CD4(+) T-cell epitopes, the BDC-2.5 T-cell 2.5 mi mimotope and glutamic acid decarboxylase (GAD) 286-300, affected diabetogenic CD4(+) T cells in nonobese diabetic (NOD) mice. When administered i.p., CTB-2.5 mi activated 2.5 mi(+) T cells and following intragastric delivery generated Ag-specific Foxp3(+) Treg and Th2 cells. While 2.5 mi(+) and GAD-specific T cells were tolerized in diabetes-resistant NODxB6.Foxp3(EGFP) F1 and nonobese resistant (NOR) mice, this did not occur in NOD mice. This indicated that NOD mice had a recessive genetic resistance to induce oral tolerance to both CTB-fused epitopes. In contrast to NODxB6.Foxp3(EGFP) F1 mice, oral treatment in NOD mice lead to strong 2.5 mi(+) T-cell activation and the sequestration of these cells to the effector-memory pool. Oral treatment of NOD mice with CTB-2.5 mi failed to prevent diabetes. These findings underline the importance of investigating the effect of oral vaccine formulations on diabetogenic T cells as in selected cases they may have counterproductive consequences in human patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.