Abstract
Cholera enterotoxin is a major antigenic determinant for virulence of Vibrio cholerae O1 which can enter into a viable but non-culturable (N-C) state, not detectable by conventional culture methods, yet remain capable of producing enterotoxin and potentially pathogenic. PCR was applied in the current study to detect the chilera toxin (ctx) gene of N-C cells, thus eliminating the necessity of culture. Sets of oligonucleotide primers were designed, based on the ctxAB operon of V. cholerae O1, to detect the presence of the ctx gene. DNA from both culturable and N-C cells of V. cholerae O1 was amplified by PCR using sets of primers flanking 302-, 564- and 777-bp fragments of the ctx gene. The PCR method employed was capable of detecting the ctx gene in N-C V. cholerae in aquatic microcosms and in diarrheal stool samples from three patients who had distinct clinical symptoms of cholera but were culture-negative for V. cholerae O1 and non-O1 and enterotoxigenic Escherichia coli. Forty cycles of a two-step reaction (30 s each at 94 and 60°C) were optimal and more time efficient than a three-step PCR described previously. The procedure, from the point of heating microcosms or broth culture samples to observation on gels, requires < 4 h to complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.