Abstract

Cholera toxin elicited 5- to 7-fold stimulation of adenylyl cyclase activity. Half-maximal activation was at 4.42 micrograms/ml cholera toxin. Cholera toxin-mediated activation was time dependent. At 0.1 mM ATP, both guanosine triphosphate (GTP) and nicotinamide adenine dinucleotide (NAD+) were required for cholera toxin activation of luteal adenylyl cyclase. The concentrations of GTP and NAD+ required for half-maximal activation were 1 and 200 microM, respectively. The GTP requirement could be eliminated by increasing the ATP concentration to 1.0 mM. Guanosine-5'-O-(2-thiodiphosphate) [GDP beta S] did not support cholera toxin activation of the luteal enzyme. Cholera toxin treatment increased GTP-stimulated activity, did not significantly alter guanyl-5'-yl imidodiphosphate [GMP-P(NH)P]-stimulated activity, and depressed NaF-stimulated activity. Furthermore, toxin treatment resulted in a 3.4-fold reduction in the Kact values for ovine luteinizing hormone (oLH) to activate adenylyl cyclase. A similar reduction in Kact values for oLH was obtained when concentration-effect curves performed in the presence of GMP-P(NH)P were compared to those performed in the presence of GTP. In addition, luteal membranes treated with cholera toxin and [32P]NAD+ were subjected to autoradiographic analysis following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This treatment resulted in the [32P] adenosine diphospho (ADP)-ribosylation of a 45,000-dalton protein doublet, corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (Ns). As with activation of adenylyl cyclase activity, cholera toxin-specific [32P] ADP-ribosylation was time dependent and increased with increasing concentrations of cholera toxin. GTP, GMP-P(NH)P, and NaF, but not GDP beta S, were capable of supporting [32P] ADP-ribosylation of the protein doublet. oLH did not alter the ability of cholera toxin to ADP-ribosylate the protein activation of luteal adenylyl cyclase activity is due to the ADP-ribosylation of the alpha subunit of Ns and the concomitant inhibition of a GTPase associated with adenylyl cyclase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.