Abstract

BackgroundOn 12 October 2015, a cholera outbreak involving 65 cases and two deaths was reported in a fishing village in Hoima District, Western Uganda. Despite initial response by the local health department, the outbreak persisted. We conducted an investigation to identify the source and mode of transmission, and recommend evidence-led interventions to control and prevent cholera outbreaks in this area.MethodsWe defined a suspected case as the onset of acute watery diarrhoea from 1 October to 2 November 2015 in a resident of Kaiso Village. A confirmed case was a suspected case who had Vibrio cholerae isolated from stool. We found cases by record review and active community case finding. We performed descriptive epidemiologic analysis for hypothesis generation. In an unmatched case-control study, we compared exposure histories of 61 cases and 126 controls randomly selected among asymptomatic village residents. We also conducted an environmental assessment and obtained meteorological data from a weather station.ResultsWe identified 122 suspected cases, of which six were culture-confirmed, 47 were confirmed positive with a rapid diagnostic test and two died. The two deceased cases had onset of the disease on 2 October and 10 October, respectively. Heavy rainfall occurred on 7–11 October; a point-source outbreak occurred on 12–15 October, followed by continuous community transmission for two weeks. Village residents usually collected drinking water from three lakeshore points – A, B and C: 9.8% (6/61) of case-persons and 31% (39/126) of control-persons were found to usually use point A, 21% (13/61) of case-persons and 37% (46/126) of control-persons were found to usually use point B (OR = 1.8, 95% CI: 0.64–5.3), and 69% (42/61) of case-persons and 33% (41/126) of control-persons were found to usually use point C (OR = 6.7; 95% CI: 2.5–17) for water collection. All case-persons (61/61) and 93% (117/126) of control-persons reportedly never treated/boiled drinking water (OR = ∞, 95% CIFisher: 1.0 – ∞). The village’s piped water system had been vandalised and open defecation was common due to a lack of latrines. The lake water was found to be contiminated due to a gully channel that washed the faeces into the lake at point C.ConclusionsThis outbreak was likely caused by drinking lake water contaminated by faeces from a gully channel. We recommend treatment of drinking water, fixing the vandalised piped-water system and constructing latrines.

Highlights

  • On 12 October 2015, a cholera outbreak involving 65 cases and two deaths was reported in a fishing village in Hoima District, Western Uganda

  • The highest attack rate was in SZ2 and the least was in SZ1

  • Findings of the case-control study Residents who collected their drinking water from site C were significantly more likely to develop cholera compared to those who collected their drinking water from site A (ORM-H = 6.7, 95% Confidence interval (CI): 2.5–17); collecting drinking water from site B was not significantly associated with an increased risk of developing choleara

Read more

Summary

Introduction

On 12 October 2015, a cholera outbreak involving 65 cases and two deaths was reported in a fishing village in Hoima District, Western Uganda. We conducted an investigation to identify the source and mode of transmission, and recommend evidenceled interventions to control and prevent cholera outbreaks in this area. Cholera is a diarrhoeal disease of epidemic potential caused by gram-negative bacteria, Vibrio cholerae [1, 2]. It is estimated that out of 1.3 billion people at risk of cholera globally, 2.86 million cholera cases occur annually in endemic countries resulting in 95,000 deaths, with the majority of these in Africa [5]. Urban slums and fishing communities in African countries are at greater risk of cholera epidemics because of overcrowding, poor sanitation and lack of a safe water supply [8,9,10,11,12,13]. Implementation of key public health strategies to achieve cholera prevention and eventual elimination is still lacking in many developing countries in Africa and Asia [14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.