Abstract
We recently reported that cholecystokinin (CCK) excited nucleus accumbens (NAc) cells and depressed excitatory synaptic transmission indirectly through gamma-aminobutyric acid (GABA), acting on presynaptic GABAB receptors (Kombian et al. [2004] J. Physiol. 555:71-84). The present study tested the hypothesis that CCK modulates inhibitory synaptic transmission in the NAc. Using in vitro forebrain slices containing the NAc and whole-cell patch recording, we examined the effects of CCK on evoked inhibitory postsynaptic currents (IPSCs) recorded at a holding potential of -80 mV throughout CCK-8S caused a reversible inward current accompanied by a concentration-dependent decrease in evoked IPSC amplitude. Maximum IPSC depression was approximately 25% at 10 microM, with an estimated EC50 of 0.1 microM. At 1 microM, CCK-8S induced an inward current of 28.3 +/- 4.8 pA (n=6) accompanied by an IPSC depression of -18.8% +/- 1.6% (n=6). This CCK-induced IPSC depression was blocked by pretreatment with proglumide (100 microM; -3.7% +/- 6.9%; n=4) and by LY225910 (100 nM), a selective CCKB receptor antagonist (4.4% +/- 2.6%; n=4). It was not blocked by SCH23390 (10 microM; -23.5% +/- 1.3%; P < 0.05; n=7) or sulpiride (10 microM; -21.8% +/- 5.1%; P <0.05; n=4), dopamine receptor antagonists. By contrast, it was blocked by CGP55845 (1 microM; -0.4% +/- 3.4%; n=5) a potent GABAB receptor antagonist, and by forskolin (50 microM; 9.9% +/- 5.2%; n=4), an adenylyl cyclase activator, and H-89 (1 microM; 6.9% +/- 3.9%; n=4), a protein kinase A (PKA) inhibitor. These results indicate that CCK acts on CCKB receptors to increase extracellular levels of GABA, which then acts on GABAB receptors to decrease IPSC amplitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.