Abstract

The ultrastructural features and synaptic relationships of cholecystokinin (CCK)-immunoreactive cells of rat and cat hippocampus were studied using the unlabeled antibody immunoperoxidase technique and correlated light and electron microscopy. CCK-positive perikarya of variable shape and size were distributed in all layers and were particularly concentrated in stratum pyramidale and radiatum: the CCK-immunoreactive neurons were nonpyramidal in shape and the three most common types had the morphological features of tufted, bipolar, and multipolar cells. Electron microscopic examination revealed that all the CCK-positive boutons established symmetrical (Gray's type II) synaptic contacts with perikarya and dendrites of pyramidal and nonpyramidal neurons. The origin of some of the boutons was established by tracing fine collaterals that arose from the main axon of two CCK-immunostained cells and terminated in the stratum pyramidale; these collaterals were then examined in the electron microscope. The axon of one such neuron exhibited a course parallel to the pyramidal layer and formed pericellular nets of synaptic boutons upon the perikarya of pyramidal neurons. This pattern of axonal arborization is very similar to that of some of the basket cells, previously suggested to be the anatomical correlate for pyramidal cell inhibition. Typical dendrites of pyramidal cells also received symmetrical synaptic contacts from CCK-immunoreactive boutons, and some of these boutons could be shown to originate from a local neuron in stratum radiatum. Many CCK-immunoreactive cells received CCK-labeled boutons upon their soma and dendritic shafts. Synaptic relationship, established by multiple "en passant" boutons, was observed between CCK-positive interneurons of the stratum lacunosum-moleculare and radiatum. The soma and dendrites of the CCK-immunostained neurons also received symmetrical and asymmetrical synapses from nonimmunoreactive boutons. These results indicate that the CCK-immunoreactive neurons participate in complex local synaptic interactions in the hippocampus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.