Abstract

Intestinal infusion of nutrients, such as glucose and oleic acid, increase Fos-like immunoreactivity (Fos-LI) in both the enteric nervous system and neurons of the dorsal vagal complex (DVC) of the hindbrain. To test the hypothesis that increased Fos-LI in enteric neurons and the DVC, following intestinal nutrient infusions is mediated by cholecystokinin 1 receptors (CCK 1), we counted enteric and DVC neurons that expressed Fos-LI following intestinal infusion of oleate or glucose, with and without pretreatment with the CCK 1 receptor antagonist, lorglumide. Both oleate and glucose infusions increased Fos-LI in the DVC. Oleate also increased Fos-LI in the myenteric and submucosal plexuses of the duodenum and the jejunum, but not the ileum, while glucose only increased Fos-LI in the submucosal plexus of the ileum. The CCK 1 receptor antagonist, lorglumide, abolished Fos-LI in the DVC following infusions of either oleate or glucose. In addition, lorglumide attenuated oleate-induced Fos-LI in the myenteric and submucosal plexuses of the duodenum and jejunum. However, lorglumide failed to attenuate glucose-induced Fos-LI in the submucosal plexus of the ileum. These data confirm previous reports indicating that CCK 1 receptors mediate increased DVC Fos-LI following intestinal infusion of oleate or glucose. CCK 1 receptors also contribute to increased Fos-LI in enteric neurons following intestinal oleate infusion. However, failure of lorglumide to attenuate the increase of Fos-LI in the ileal submucosal plexus following intestinal glucose suggests that some intestinal nutrients trigger Fos-LI induction via CCK 1 receptor-independent pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call