Abstract

Bile acid resistance by Lactococcus lactis depends on the ABC-type multidrug transporter LmrCD. Upon deletion of the lmrCD genes, cells can reacquire bile acid resistance upon prolonged exposure to cholate, yielding the ΔlmrCD(r) strain. The resistance mechanism in this strain is non-transporter based. Instead, cells show a high tendency to flocculate, suggesting cell surface alterations. Contact angle measurements demonstrate that the ΔlmrCD(r) cells are equipped with an increased cell surface hydrophilicity compared to those of the parental and wild-type strains, while the surface hydrophilicity is reduced in the presence of cholate. ΔlmrCD(r) cells are poor in biofilm formation on a hydrophobic polystyrene surface, but in the presence of subinhibitory concentrations of cholate, biofilm formation is strongly stimulated. Biofilm cells show an enhanced extracellular polymeric substance production and are highly resistant to bile acids. These data suggest that non-transporter-based cholate resistance in L. lactis is due to alterations in the cell surface that stimulate cells to form resistant biofilms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.