Abstract
Background & aimsCholangiopathies are chronic liver diseases in which damaged cholangiocytes trigger a proinflammatory and profibrotic reaction. The nuclear vitamin D receptor (VDR) is highly expressed in cholangiocytes and exerts immune-regulatory functions in these cells. In the present study, we examined the protective function of VDR and other vitamin D signaling pathways in chronic cholangiopathy and cholangiocytes. MethodsVdr was invalidated in Abcb4 knockout mice, a widely used animal model of chronic cholangiopathy. The impact of vitamin D signaling on cholangiopathy features was examined in vivo and in cholangiocytes (primary and cell lines). ResultsCholangiopathy features (i.e, cholestasis, ductular reaction and fibrosis) were aggravated in Vdr;Abcb4 double knockout mice compared to the Abcb4 simple knockout, and associated with an overexpression of proinflammatory factors. The proinflammatory phenotype of cholangiocytes was also exacerbated following VDR silencing in vitro. The expression of proinflammatory factors and the severity of cholangiopathy were reduced in the double knockout mice treated with the vitamin D analog calcipotriol or with vitamin D. In vitro, the inflammatory response to TNFα was significantly reduced by calcipotriol in biliary cells silenced for VDR, and this effect was abolished by co-silencing the plasma membrane receptor of vitamin D, protein disulfide-isomerase A3 (PDIA3). ConclusionsOur results demonstrate an anti-inflammatory role of VDR signaling in cholangiocytes and cholangiopathy. They also provide evidence for PDIA3-mediated anti-inflammatory effects of vitamin D and vitamin D analog in these settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.