Abstract

The article presents a method of selecting an arch yielding support for preparatory workings driven in a hard coal seam. Particular attention was paid to discontinuous deformation in the form of a fault, which significantly contributes to the change of the excavation protection schemes. On the basis of the geometry of the machines and devices in the designed excavation, the support was selected, which was then checked for the ventilation criterion. In the next stage, analytical calculations were carried out using the determined spacing of the steel support in the fault zone and the area outside of it. Additionally, using the RS3 numerical software based on the finite element method, a rock mass model with a fault was built, through which the preparatory excavation passes. The aim of the research was to determine the total displacements occurring in the fault crossing zone for the excavation without support and with the use of steel arch yielding and with additional reinforcement in the form of straight segments. In conclusion, it was found that the variants of the excavation reinforcement can be modeled and selected in advance, which allows for the fastest possible execution of the driving and the maintenance of the minimum movement dimensions while passing through the fault.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call