Abstract

Synthetic mesh material is of great importance for surgical incisional hernia repair. The physical and biochemical characteristics of the mesh influence mechanical stability and the foreign body tissue reaction. The influence on bacterial infections, however, remains ill-defined. The aim of the present study was to evaluate the influence of a modified mesh structure with variation in filament linking on the occurrence of bacterial infection that is indicated by the occurrence of CD68+, CD4+, and CD8+ cells in two different materials. A total of 56 male Sprague Dawley rats received a surgical mesh implant in a subcutaneous abdominal position. The mesh of two different polymers (polypropylene (PP) and polyvinylidenfluoride (PVDF)) and two different structures (standard structure and bold structure with higher filament linking) were compared. During the implantation, the meshes were infected with Staphylococcus (S.) aureus. After 7 and 21 days, meshes were explanted, and the early and late tissue responses to infection were histologically evaluated. Overall, the inflammatory tissue response was higher at 7 days when compared to 21 days. At 7 days, PP meshes of the standard structure (PP-S) showed the strongest inflammatory tissue response in comparison to all the other groups. At 21 days, no statistically significant difference between different meshes was detected. CD8+ cytotoxic T cells showed a significant difference at 21 days but not at 7 days. PP meshes of both structures showed a higher infiltration of CD8+ T cells than PVDF meshes. CD4+ T helper cells differed at 7 days but not at 21 days, and PVDF meshes in a bold structure showed the highest CD4+ T cell count. The number of CD68+ macrophages was also significantly higher in PP meshes in a standard structure when compared to PVDF meshes at 21 days. The inflammatory tissue response to S. aureus infection appears to be highest during the early period after mesh implantation. PP meshes showed a higher inflammatory response than PVDF meshes. The mesh material appears to be more important for the risk of infection than the variation in filament linking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call