Abstract

It has been shown that when subjects can predict object properties [e.g., weight or center of mass (CM)], fingertip forces are appropriately scaled before the object is lifted, i.e., before somatosensory feedback can be processed. However, it is not known whether subjects, in addition to these anticipatory force mechanisms, exploit the ability to choose where digits can be placed to facilitate object manipulation. We addressed this question by asking subjects to reach and grasp an object whose CM was changed to the left, center, or right of the object in either a predictable or unpredictable manner. The only task requirement was to minimize object roll during lift. We hypothesized that subjects would modulate contact points but only when object CM location could be predicted. As expected, object roll was significantly smaller in the predictable condition. This experimental condition was also associated with statistically distinct spatial distributions of contact points as a function of object CM location but primarily when large torques had to be counteracted, i.e., for right and left CM locations. In contrast, when subjects could not anticipate CM location, a "default" distribution of contact points was used, this being statistically indistinguishable from that adopted for the center CM location in the predictable condition. We conclude that choice of contact points is integrated with anticipatory force control mechanisms to facilitate object manipulation. These results demonstrate that planning of digit placement is an important component of grasp control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call