Abstract

Recent human brain imaging studies have identified widely distributed cortical areas that represent information about the meaning of language. Yet, the dynamic nature of widespread neural activity as a correlate of the semantic information processing remains poorly explored. Our state space analysis of electroencephalograms (EEGs) recorded during semantic match-to-category task show that depending on the semantic category and decision path chosen by participants, whole-brain delta-band dynamics follow distinct trajectories that are correlated with participants' response time on a trial-by-trial basis. Especially, the proximity of the neural trajectory to category decision-specific region in the state space was predictive of participants' decision-making reaction times. We also found that posterolateral regions primarily encoded word categories while postero-central regions encoded category decisions. Our results demonstrate the role of neural dynamics embedded in the evolving multivariate delta-band activity patterns in processing the semantic relatedness of words and the semantic category-based decision-making.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.