Abstract
Inorganic phosphate (Pi ) is an essential ion involved in diverse cellular processes including metabolism. Changes in cellular metabolism upon long term adaptation to Pi limitation have been reported in E. coli. Given the essential role of Pi , adaptation to Pi limitation may also result in metabolic changes in animal cells. In this study, we have adapted CHO cells producing recombinant IgG to limiting Pi conditions for 75 days. Not surprisingly, adapted cells showed better survival under Pi limitation. Here, we report the finding that such cells also showed better growth characteristics compared to control in batch culture replete with Pi (higher peak density and integral viable cell density), accompanied by a lower specific oxygen uptake rate and cytochrome oxidase activity towards the end of exponential phase. Surprisingly, the adapted cells grew to a lower peak density under glucose limitation. This suggests long term Pi limitation may lead to selection for an altered metabolism with higher dependence on glucose availability for biomass assimilation compared to control. Steady state U-13 C glucose labeling experiments suggest that adapted cells have a higher pyruvate carboxylase flux. Consistent with this observation, supplementation with aspartate abolished the peak density difference whereas supplementation with serine did not abolish the difference. This supports the hypothesis that cell growth in the adapted culture might be higher due to a higher pyruvate carboxylase flux. Decreased fitness under carbon limitation and mutations in the sucABCD operon has been previously reported in E. coli upon long term adaptation to Pi limitation, suggestive of a similarity in cellular response among such diverse species. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:749-758, 2017.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.