Abstract

Chlortetracycline (CTC) is a hazardous material in aquatic environments. This study was focused on optimization of photocatalytic ozonation processes for removal of CTC from wastewater at pH 2.2 and 7.0. In this study, the tested processes for CTC removal were arranged from the least efficient to the most efficient as: UV, UV/TiO2, O3, O3/UV and O3/UV/TiO2. Ozonation efficiency was due to ozone affinity for electron-rich sites on the CTC molecule. In the O3/UV and O3/UV/TiO2 processes, efficiency was increased by the photolysis of CTC and generation of •OH. At pH 7.0, all the processes were more efficient for CTC degradation than at pH 2.2 due to CTC speciation, ozone decay to •OH and the attractions between ionized CTC and TiO2 particles. UV/O3 at pH 7.0 showed an additive effect while other combination processes showed a synergistic effect that resulted in higher rates of reactions than the sums of individual reaction rates. The TOC removal ranged from 8% to 41% after one hour of reaction, with the above-mentioned order of efficiency. The biodegradability increased rapidly during the early minutes of the reaction. A reaction time of 10–15 min was sufficient for near maximum biodegradability, making these processes good pretreatments for the biological processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.