Abstract

Indiscriminate use of insecticides leads to environmental problems and poses a great threat to beneficial microorganisms. The aim of the present work was to study chlorpyrifos degradation by a rice field cyanobacterium Synechocystis sp. strain PUPCCC 64 so that the organism is able to reduce insecticide pollution in situ. The unicellular cyanobacterium isolated and purified from a rice field was identified by partial 16S rRNA gene sequence as Synechocystis sp. strain PUPCCC 64. Tolerance limit of the organism was determined by studying its growth in graded concentrations (2.5-20 mg/L) of chlorpyrifos. Chlorpyrifos removal was studied by its depletion from the insecticide supplemented growth medium, and its biodegradation products were identified in the cell extract, biomass wash, and growth medium. The organism tolerated chlorpyrifos up to 15 mg/L. Major fraction of chlorpyrifos was removed by the organism during the first day followed by slow uptake. Biomass, pH, and temperature influenced the insecticide removal and the organism exhibited maximum chlorpyrifos removal at 100 mg protein/L biomass, pH 7.0, and 30°C. The cyanobacterium metabolized chlorpyrifos producing a number of degradation products as evidenced by GC-MS chromatogram. One of the degradation products was identified as 3,5,6-trichloro-2-pyridinol. Present study reports the biodegradation of chlorpyrifos by Synechocystis sp. Biodegradation of the insecticide by the cyanobacterium is significant as it can be biologically removed from the environment. The cyanobacterium may be used for bioremediation of chlorpyrifos-contaminated soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.