Abstract

Inflammation is a major component of idiosyncratic adverse drug reactions (IADRs). To understand the molecular mechanism of inflammation-mediated IADRs, we determined the role of the Toll-like receptor (TLR) signaling pathway in idiosyncratic hepatotoxicity of the anti-psychotic drug, chlorpromazine (CPZ). Activation of TLRs recruits the first adaptor protein, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) to the TIR domain of TLRs leading to the activation of the downstream kinase, c-Jun-N-terminal kinase (JNK). Prolonged activation of JNK leads to cell-death. We hypothesized that activation of TLR2 by lipoteichoic acid (LTA) or TLR4 by lipopolysaccharide (LPS) will augment the hepatotoxicity of CPZ by TIRAP-dependent mechanism involving prolonged activation of JNK. Adult male C57BL/6, TIRAP+/+ and TIRAP−/− mice were pretreated with saline, LPS (2mg/kg) or LTA (6mg/kg) for 30min or 16h followed by CPZ (5mg/kg) or saline (vehicle) up to 24h. We found that treatment of mice with CPZ in presence of LPS or LTA leads to ~3–4 fold increase in serum ALT levels, a marked reduction in hepatic glycogen content, significant induction of serum tumor necrosis factor (TNF) α and prolonged JNK activation, compared to LPS or LTA alone. Similar results were observed in TIRAP+/+ mice, whereas the effects of LPS or LTA on CPZ-induced hepatotoxicity were attenuated in TIRAP−/− mice. For the first time, we show that inflammation-mediated hepatotoxicity of CPZ is dependent on TIRAP, and involves prolonged JNK activation in vivo. Thus, TIRAP-dependent pathways may be targeted to predict and prevent inflammation-mediated IADRs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call