Abstract

A cobalt porphyrin‐catalyzed chlorotrifluoromethylation reaction of olefins is described. The use of CF3SO2Cl as the CF3 radical source and a cobalt catalyst enabled the selective addition of CF3 radicals under thermal conditions. Various functional groups such as esters and Ar–X moieties, which can be reactive with low valent transition metal catalysts, were well‐tolerated in this catalytic process. A highly functionalized alkaloid derivative was also tolerated as a substrate. As a demonstration of the bio‐inspired catalytic system, catalytic usage of vitamin B12, which is the commercially available form of the natural cobalt porphyrinoid, was employed, and diastereoselective chlorotrifluoromethylation of the alkaloid molecule was achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.