Abstract

Chlorothalonil, a halogenated benzonitrile compound, is one of the most widely used fungicides in the world. Anaerobic microcosm assays were established to evaluate the combined effect of the initial content of carbon (6.3, 9.45 and 12.6 mg g-1), nitrogen (0.6, 1.8 and 3 mg g-1)and chlorothalonil (432, 865 and 1298 ηg g-1) on the biodegradation of this fungicide by microbiota from an agricultural tropical soil. A Box-Behnken experimental design was used and chlorothalonil depletion was followed by HPLC with UV detection. The initial carbon content and fungicide dose were found to have a significant effect on removal efficiency. After 25 days of incubation, a high chlorothalonil depletion was observed in all biologically active microcosms (56–95%) although abiotic loss in a sterile blank was also notable (37%). The results suggest a high potential for chlorothalonil biodegradation under anaerobic conditions by indigenous microbial communities from soil that has been continuously exposed to high doses of the fungicide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.