Abstract
Abstract— The fluorescence of chlorotetracycline (CTC) in the presence of synaptosomes isolated from sheep brain is selectively increased by Ca2+ under conditions in which Mg2+, Na+, K+, Li+ or choline have only a small effect. The monovalent cations release bound Ca2+ from synaptosomes, and this effect is reflected by a decrease in the CTC fluorescence. Under optimal conditions there is a near parallelism between Ca2+ and CTC binding to the synaptosomes membranes, and Li+ is the monovalent cation tested which interferes the most with the binding of both substances. These results obtained in a predominantly sucrose medium become less distinct when media simulating physiological composition are utilized, which limits the usefulness of the method. Brain mitochondria and myelin also bind Ca2+ and CTC. The ratio of the fluorescence signal (or CTC bound) to Ca2+ bound is highest of all for mitochondrial membranes, and the apparent fluorescence quantum yield of CTC is also the highest in these membranes, which suggests that the Ca2+ in these membranes is localized in a more apolar region than is the case for synaptosomes and myelin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.