Abstract

An Arabidopsis (Arabidopsis thaliana) double mutant impaired in starch biosynthesis and the triose phosphate/phosphate translocator (adg1-1/tpt-1) is characterized by a diminished utilization of photoassimilates and the concomitant consumption of reducing power and energy produced in the photosynthetic light reaction. In order to guarantee survival, the double mutant responds to this metabolic challenge with growth retardation, an 80% decline in photosynthetic electron transport, diminished chlorophyll contents, an enhanced reduction state of plastoquinone in the dark (up to 50%), a perturbation of the redox poise in leaves (increased NADPH/NADP ratios and decreased ascorbate/dehydroascorbate ratios), hyperstacking of grana thylakoids, and an increased number of plastoglobules. Enhanced oxygen consumption and applications of inhibitors of alternative mitochondrial and chloroplast oxidases (AOX and PTOX) suggest that chlororespiration as well as mitochondrial respiration are involved in the enhanced plastoquinone reduction state in the dark. Transcript amounts of PTOX and AOX were diminished and nucleus-encoded components related to plastidic NADH reductase (NDH1) were increased in adg1-1/tpt-1 compared with the wild type. Cytochrome b559, proposed to be involved in the reoxidation of photosystem II, was not regulated at the transcriptional level. The hyperstacking of grana thylakoids mimics adaptation to low light, and increased plastoglobule numbers suggest a response to enhanced oxidative stress. Altered chloroplast organization combined with perturbations in the redox poise suggests that adg1-1/tpt-1 could be a tool for the in vivo study of retrograde signaling mechanisms controlling the coordinated expression of nucleus- and plastome-encoded photosynthetic genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.