Abstract
Chloroquine (CQ), a 4-aminoquinoline drug, has long been used in the treatment and prevention of malaria. However its side effect generalized pruritus contributes to treatment failures, and consequently results in the development of chloroquine resistant strains of Plasmodium falciparum. It was proposed that the administration of CQ correlated with increase in nitric oxide (NO) production. Nitric oxide is involved in some pruritic disorders such as atopic dermatitis, psoriasis and scratching behavior evoked by pruritogens like substance P. Therefore, the aim of this study was to investigate the involvement of NO/cGMP pathway in CQ-induced scratching in mice.Scratching behaviors were recorded by a camera after intradermal (ID) injection of CQ in the shaved rostral back of the mice. The results obtained show that CQ elicited scratching in a dose-dependent manner with a peak effective dose of 400μg/site. Injection of non-specific NOS inhibitor, N-nitro-l-arginine methyl ester or neuronal NOS selective inhibitor and 7-nitroindazole, reduced CQ-induced scratching significantly. On the other hand, administration of aminoguanidine as inducible NOS inhibitor has no inhibitory effect on this behavior. Also, injection of l-arginine as a precursor of NO significantly increased this response. Conversely, accumulation of cGMP by sildenafil as a selective phosphodiesterase type 5 inhibitor, potentiated the scratching behavior by CQ. This study therefore shows that CQ-induced scratching behavior is mediated by the NO/cGMP pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.