Abstract

Chloroquine diphosphate (CQ), a weak base used to inhibit autophagic flux and treat malaria and rheumatoid diseases, has been shown, through unknown mechanisms, to improve glucose and lipid homeostasis in patients and rodents. We investigate herein the molecular mechanisms underlying these CQ beneficial metabolic actions in diet-induced obese mice. For this, C57BL6/J mice fed with either a chow or a high-fat diet (HFD) and uncoupling protein 1 (UCP-1) KO and adipocyte Atg7-deficient mice fed with a HFD were treated or not with CQ (60 mg/kg of body weight/day) during 8 weeks and evaluated for body weight, adiposity, glucose homeostasis and brown and white adipose tissues (BAT and WAT) UCP-1 content. CQ reduced body weight gain and adipose tissue and liver masses in mice fed with a HFD, without altering food intake, oxygen consumption, respiratory exchange ratio, spontaneous motor activity and feces caloric content. CQ attenuated the insulin intolerance, hyperglycemia, hyperinsulinemia, hypertriglyceridemia and hypercholesterolemia induced by HFD intake, such effects that were associated with increases in serum and liver fibroblast growth factor 21 (FGF-21) and BAT and WAT UCP-1 content. Interestingly, CQ beneficial metabolic actions of reducing body weight and adiposity and improving glucose homeostasis were preserved in HFD-fed UCP-1 KO and adipocyte Atg7 deficient mice. CQ reduces body weight gain and adiposity and improves glucose homeostasis in diet-induced obese mice through mechanisms that might involve FGF-21, but not UCP1-mediated nonshivering thermogenesis or inhibition of adipocyte autophagy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call