Abstract

The chloroplastic glyceride isoform of dihydroxyacetone phosphate reductase (Gly-DHAPR) in the photosynthetic unicellular green algae, Dunaliella, plays key role in the synthesis of glycerol-P and glycerides. A four-step procedure has been developed to purify the Gly-DHAPR from the chloroplasts of Dunaliella tertiolecta. The enzyme was purified 462-fold to apparent electrophoretic homogeneity by precipitation of Rubisco by polyethylene glycol-4000, and successive chromatography on DEAE cellulose, Sephacryl S-200, and Red Agarose. The overall yield of the purified enzyme was 5.1% with a specific activity of 425 μmol. min−1. mg−1 protein, and a subunit molecular mass of 37 kD. The Gly-DHAPR had little preference for NADH or NADPH, but was highly specific for DHAP. The purified enzyme was slightly stimulated by 50 mM NaCl, KCl or by 25 mM MgCl2. Detergents, lipids, fatty acids, or long-chain acyl-CoA derivatives inhibited the Gly-DHAPR. The Gly-DHAPR differs in properties from the other chloroplastic osmoregulatory isoform of DHAP reductase from Dunaliella, but has significant similarities with the glyceride isoforms from higher plants for glycerol-P and triglyceride synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.