Abstract

Chlorophyll precursors Mg-protoporphyrin IX and its monomethylester are candidates for plastid-derived molecules involved in light signalling from the chloroplast to the nucleus. The pool sizes of these two Mg2+-containing porphyrins and of protoporphyrin IX transiently increased upon a shift of Chlamydomonas cultures from dark to light. This increase coincided with the accumulation of mRNAs encoded by the nuclear genes HSP70A and HSP70B. Analysis of a mutant (brs-1), previously shown to be defective in the light induction of these genes, revealed high levels of protoporphyrin IX but no light-induced increase in the levels of Mg2+-containing porphyrins. Inhibitors of cytoplasmic protein synthesis prevented both the light-induced rise in pool levels and induction of the HSP70 genes. Similarly, pre-gametes, intermediates of sexual differentiation, lacked both responses to light. The block in light induction of the HSP70 genes in inhibitor-treated cells and in pre-gametes could be circumvented by the exogenous addition of Mg-protoporphyrin IX in the dark. This suggests an essential role for light-induced Mg-protoporphyrin IX accumulation in this chloroplast-to-nucleus signalling pathway. However, accumulation of this porphyrin in the dark - presumably in the chloroplast - did not result in induction. A second crucial role for light in this signalling pathway is postulated which makes this plastidic compound accessible to the cytoplasm/nucleus where the downstream signalling pathway may be activated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.