Abstract

The USDA-ARS National Plant Germplasm System (NPGS) maintains a large collection of Maleae, including 49 Malus taxa, 36 Pyrus taxa, and 24 additional genera with ornamental and plant breeding value. These plant genetic resources are primarily maintained clonally as trees or shrubs in field conditions, and seeds are also conserved for some species. We used NPGS Maleae taxa to assess the genetic diversity across the tribe Maleae and placed Pyrus taxa within this broader context using analytical methods that displayed the genetic relationships as a network, rather than as a traditional dendrogram. Sequence variation from four conserved chloroplast regions unraveled the complex and often reticulate genetic relationships among and within 109 economically important Maleae taxa. In a broad sense, chloroplast haplotypes differentiated Pyrus species within Sections Pyrus and Pashia. The genetic relationships amongst Pyrus species were found to be complex, likely resulting from multiple hybridization and expansion/contraction events during the speciation process. Knowledge of the genetic relationships among Maleae genera and/or species may aid in the selection of materials for use as rootstocks and or breeding (hybridization) programs. Future collection efforts to augment the NPGS accessions within the tribe Maleae will improve the coverage and representation and assure conservation of important Rosaceae genetic resources in the NPGS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call