Abstract
Glutamine synthetase (GS) is of central interest as the main route of ammonia assimilation in plants, and as a connection point between the organic and inorganic worlds. Even though GS activity is critical for producing high yields of crop plants, the autoregulation of substrate consumption of wheat GS remained unknown until now. Here we show kinetic evidence, that the chloroplast localized GS isoform (GS2) of wheat (Triticum aestivum L. cv. Jubilejnaja-50) takes place at the carbon-nitrogen metabolic branch point, where it is a mediator, and its enzymatic activity is regulated in a negatively cooperative allosteric manner. We have discovered that GS2 activity is described by a tetraphasic kinetic curve in response to increasing levels of glutamate supply. We constructed a model that explains the kinetic properties of glutamate consumption and this unique allosteric behavior. We also studied the subunit composition of both wheat leaf GS isoenzymes by a combination of two dimensional gel electrophoresis and protein blotting. Both leaf isozymes have homogeneous subunit composition. Glutamate is both a substrate, and an allosteric regulator of the biosynthetic reaction. We have concluded on the basis of our results and previous reports, that wheat GS2 is probably a homooctamer, and that it processes its substrate in a well-regulated, concentration dependent way, as a result of its negatively cooperative, allosteric activity. Thus, GS2 has a central role as a regulator between the nitrogen and the carbon cycles via maintaining glutamine-glutamate pool in the chloroplast on the level of substrates, in addition to its function in ammonia assimilation.
Highlights
Metabolism is based on finely regulated, interconnected systems, operated by enzymes that are responding to multiple inputs
It has been shown by native gel electrophoresis that two isoforms of Glutamine synthetase (GS) are present in wheat leaves: the cytoplasmic GS1 and the plastidic GS2 (Pécsváradi et al, 2009)
At least 80% of total GS activity derives from GS2 isozyme (McNally et al, 1983), crude extracts are suitable for exploratory kinetic studies
Summary
Metabolism is based on finely regulated, interconnected systems, operated by enzymes that are responding to multiple inputs. The details of enzyme fine tuning are gradually being discovered and described. The emerging picture is complex, revealing multitasking intermediates that are substrates, products and regulatory elements, or signaling molecules at the same time. The intracellular level of such key molecules must be carefully controlled for mediating adequate cellular and physiological responses. At critical steps of cyclical processes or at branch points connecting pathways, key enzymes, act as finely tuned switches, allowing homeostasis in rapidly changing biochemical environments (Bush et al, 2012).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.