Abstract

Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.