Abstract

We analyzed the sequence alignment on 25 AA rice and 24 non-AA rice chloroplasts using two length diversity markers (ORF 100 and ORF29-TrnCGCA) and four sequence markers existed in introns of rps16 gene and TrnTUGU-TrnLUAA spacer to explore the chloroplast diversity of different types of rice using PCR amplification and sequencing. Results showed that in terms of the length of ORF100 and ORF29-TrnCGCA, chloroplast DNA (cp DNA) of Hainan ordinary wild rice, Dongxiang ordinary wild rice, Hepu ordinary wild rice and three-line cytoplasmic male sterile wild rice were indica-type, Chaling ordinary wild rice, Fusui ordinary wild rice, Niwara wild rice, Brazilian upland rice and Lemont were japonica-type among in AA genome. Besides, all non-AA wild rice was japonica-type. There were 4 indica-japonica markers utilizing introns of rps16 gene and TrnTUGU-TrnLUAA. We found that all the ordinary wild rice in Chaling and Fusui of AA genome presented as japonica specific sites, while the others owned two indica and japonica specific sites, respectively. There were two indica-japonica sites separately and a 6-base specific fragment in three-line cytoplasmic male sterile materials except Yuetai A, simultaneously, 2-base difference from Hainan wild rice. Moreover, Brazilian upland rice and Lemont were entire japonica specific sites. Result of three markers indicated that the cp DNA of non-AA wild rice was japonica-type and result of one marker showed indica-type. Sequencing results also suggested that wild rice existed many polymorphic base sites, CCDD genome, wart wild rice and malay wild rice had their own specific sites. In conclusion, significant differentiation trend of indica-japonica exhibits in chloroplast of ordinary wild rice, and non-AA wild rice is generally japonica-type. The cytoplasmic polymorphism level of three-line sterile lines is low. It is worth considering whether the cytoplasm of Honglian-type sterile line Yuetai A comes from Hainan ordinary wild rice. Furthermore, genetic polymorphisms in wild rice are far more than in cultivar.

Highlights

  • Cytoplasmic DNA is mainly maternal inheritance, which has higher genetic stability and lower mutation frequency than nuclear DNA

  • We found that all the ordinary wild rice in Chaling and Fusui of AA genome presented as japonica specific sites, while the others owned two indica and japonica specific sites, respectively

  • Shaw recommended that the introns of rps16 and the TrnTUGU-TrnLUAA (Threonine and Leucine transfer RNA gene) intertranscriptional region were the two hypervariable fragments in plant chloroplast DNA (cp DNA), which were vital for the study of rice cp DNA polymorphism [8]

Read more

Summary

Introduction

Cytoplasmic DNA is mainly maternal inheritance, which has higher genetic stability and lower mutation frequency than nuclear DNA. Japonica-type cp DNA has a 69-bp repeat fragment while deleted in indica-type among in the ORF100 (open reading frame 100), so the band of japonica rice lags behind that of indica rice on the electrophoresis map. Sun et al divided 151 cp DNA of ordinary wild rice into indica-japonica taking advantage of ORF100 marker [5]. Since it has been widely adopted as a marker for distinguishing the indica-japonica types [6]. Shaw recommended that the introns of rps (ribosomal protein S16) and the TrnTUGU-TrnLUAA (Threonine and Leucine transfer RNA gene) intertranscriptional region were the two hypervariable fragments in plant cp DNA, which were vital for the study of rice cp DNA polymorphism [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call