Abstract

Abstract The quenching of the triplet state of chlorophyll a (Chl) by asymmetrically located electron acceptors was examined in vesicle systems containing egg yolk phosphatidylcholine and 0–50 mole % cholesterol. The incorporation of cholesterol had two main effects: (1) the distribution of Chl within the vesicle wall shifted from one favoring the inner monolayer to one favoring the outer monolayer, and (2) the Chi molecules (both ground and excited states) became more accessible to water and to the quencher molecules. This latter property was probably due to the creation of space between the phospholipid head groups by insertion of cholesterol. These phenomena required cholesterol concentrations in excess of 15 mol %. In general, the addition of cholesterol caused increases in the apparent bimolecular rate constant for triplet quenching, in the probability that quenching produced radicals, and in the rate of radical recombination. Some of the specific effects of cholesterol depended upon whether or not the quencher molecules were amphiphilic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.