Abstract

Chlorophylls are produced by all photosynthetic organisms and are ideal targets for compound-specific isotopic studies of phytoplankton. In laboratory cultures, the difference between the nitrogen (N) isotope ratio (δ15N value) of chlorophyll and the δ15N value of biomass, known as εpor, varies taxonomically, yielding potential applications for studying productivity in modern and ancient environments. Here we take advantage of the annual cyanobacterial bloom in Lake Erie, USA, to demonstrate εpor patterns in a natural community. The resulting time series shows that environmental observations are similar to laboratory cultures: predicted εpor endmember values range from 4.6‰ to 7.4‰ for eukaryotic algae, and −18‰ to −21‰ for cyanobacteria. Because the range and sensitivity of εpor is similar between laboratory and natural settings, the data support the use of εpor as a reliable tracer of the relative contributions of cyanobacteria and eukaryotic algae to nutrient utilization and primary production in lacustrine environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.