Abstract

A brief review is given of investigations on stres-induced alterations of ms-to s-luminescence yield of chlorophyll in plants. Three different approaches are considered: phytoluminography, luminescence-temperature curves, and luminescence induction curves. The remainder of this article presents new results of the effect of heat stress on luminescence induction curves of isolated chloroplasts. Three parameters with widely different heat resistances were resolved from induction curves. A fast valinomycin sensitive transient, L'i, with a 50% inhibition temperature of 33 to 34°C was correlated with the magnitude of the light-induced membrane potential after heat pretreatment. A slower nigericin sensitive transient, L'm, with a 50% inhibition temperature of 39 to 40°C was mainly correlated with the light-induced proton gradient. An uncoupler resistant part of the induction curve, L0, was enhanced by heat stress (half maximum after pretreatment at 46°C) and was correlated with the degree of inhibition of oxygen evolution. Since L0 was also raised by other treatments impairing the oxygen evolving enzyme system, and since this rise was inhibited by DCMU and hydroxylamine, this type of luminescence was ascribed to the intrinsic backreaction. We conclude that luminescence induction curves can serve as an useful indicator of the intactness of the membrane potential, the proton gradient, and the oxygen evolving enzyme system in isolated chloroplasts after heat stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.