Abstract

The aim of this work was to examine a possible impact of liposomes lipids microenvironment, dictated by a chemical composition of the fatty acid branches, on incorporation and spectral behaviour of chlorophyll a, and its derivative, chlorophyllide a inside small liposomes. The liposomes with the incorporated chlorophylls were made of dimirystoyl phosphatidylcholine (DMPC), and unsaturated phosphatidylcholine (PC), containing significant fractions of unsaturated fatty acid moieties. In order to achieve the goal, both absorption and fluorescence polarization spectroscopy were applied, and the obtained data for the two incorporated pigments, which play a role of molecular sensors, were compared. In addition, quercetin, a well-known antioxidant, was used as the (chlorophylls) emission quencher, in order to estimate the type of environment sensed by the two pigments for the two liposomes that differ in chemical composition. The results, based primarily on fluorescence polarization data have shown that the emissions as well as the emission quenching were notably affected by a change in the lipids? chemical composition. That is an indirect proof of the impact of the liposomes microenvironment on the incorporated pigments? spectral behaviour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.