Abstract

Dichlorodiphenyltrichloroethane (DDT) is a representative organochlorine insecticide and a known endocrine disruptor. Malathion is an organophosphate insecticide and a next-generation pesticide. Previously, it was shown that oxytocin (OT) and prostaglandins (PGs) are involved in the mechanism of the adverse effect of DDT on bovine myometrial contractions. However, disruption of myometrial contractions without disruption of cervical activity may not be sufficient to cause preterm delivery. Hence, the aim of this study was to determine the effects of insecticides on the function of the bovine cervix at preovulation period. Bovine cervical cells or strips were treated with DDT or malathion (0.1–100 ng/ml), and neither DDT nor malathion (each at a dose of 100 ng/ml) affected the viability of cervical cells. Malathion (0.1–10 ng/ml) and the high doses of DDT (10 ng/ml) decreased the force of cervical contractions, in contrast to a low dose of DDT (0.1 ng/ml). Both insecticides also decreased the mRNA expression of the OT receptor and the level of the second messenger (inositol triphosphate, IP3). Moreover, DDT decreased the amount of other second messengers (diacylglycerol, DAG), while malathion decreased the amount of gap junction protein (GAP). Only malathion increased PGE2 and decreased PGF2α secretion, while neither insecticide had an effect on both prostaglandins synthesis. Both DDT and malathion impaired cervical contractions, secretory function and cellular signalling. It is also possible that malathion-mediated induction of locally produced PGE2 can be followed by cervical softening. Admittedly it was shown that DDT and malathion can evoke failures in the regulation of motor function of cervix during oestrus cycle, while their harmful effect on gestation can be also not excluded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call