Abstract
Chlorogenic acid, a phenolic compound found ubiquitously in plants, is an in vitro antioxidant and metal chelator. Some derivatives of chlorogenic acid are hypoglycemic agents and may affect lipid metabolism. Concentrations of cholesterol and triacylglycerols are of interest due to their association with diseases such as non-insulin-dependent-diabetes- mellitus and obese insulin resistance. As little is known about the effects of chlorogenic acid in vivo, studies using obese, hyperlipidemic, and insulin resistant (fa/fa) Zucker rats were conducted to test the effect of chlorogenic acid on fasting plasma glucose, plasma and liver triacylglycerols and cholesterol concentrations. Aditionally, the effects of chlorogenic acid on selected mineral concentrations in plasma, spleen, and liver were determined. Rats were implanted with jugular vein catheters. Chlorogenic acid was infused (5 mg/Kg body weight/day) for 3 weeks via intravenous infusion. Chlorogenic acid did not promote sustained hypoglycemia and significantly lowered the postprandial peak response to a glucose challenge when compared to the same group of rats before Chlorogenic acid treatment. In Chlorogenic acid-treated rats, fasting plasma cholesterol and triacylglycerols concentrations significantly decreased by 44% and 58% respectively, as did in liver triacylglycerols concentrations (24%). We did not find differences ( p > 0.05) in adipose triacylglycerols concentration. Significant differences ( p < 0.05) in the plasma, liver, and spleen concentration of selected minerals were found in chlorogenic acid-treated rats. In vivo, chlorogenic acid was found to improve glucose tolerance, decreased some plasma and liver lipids, and improve mineral pool distribution under the conditions of this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.