Abstract

Plants synthesize diverse types of secondary metabolites and some of them participate in plant protection against pathogen attack. These compounds are biodegradable and renewable alternatives, which may be envisaged for the control of plant pests and diseases. Chlorogenic acid (CGA) is a phenolic secondary metabolite which accumulates in diverse plant tissues and can be found in several agro-industrial by-products and waste. The aim of this work was to determine whether CGA could control the growth of various plant pathogenic fungi, gaining insight into its mechanism of action. Microscopic analysis showed the complete inhibition of spore germination or reduction of mycelial growth for Sclerotinia sclerotiorum, Fusarium solani, Verticillium dahliae, Botrytis cinerea and Cercospora sojina. CGA concentrations that did not completely abolish spore germination were able to produce a partial inhibition of mycelial growth. Viability tests and vital dye staining demonstrate that CGA induces fungal cell lysis. Its fungicidal activity involves an early membrane permeabilization of the spores. These results show the antifungal activity of CGA against phytopathogenic fungi relevant in horticulture and agriculture highlighting the potential of CGA-enriched wastes and by-products to be used as biofungicides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.