Abstract
A high-fat diet (HFD) has been previously associated with the development of diseases such as chronic colitis. While chlorogenic acid (CGA) is known to exhibit potent antioxidant, antibacterial, and anti-inflammatory properties, little is known about its effects on intestinal inflammation. In this study, we investigated the effects of CGA on intestinal inflammation in an HFD-induced obesity rat model and assessed whether these effects were related to changes in gut microbiota composition. This was achieved by examining physiological and biochemical indicators, the liver transcriptome, and the structure of the fecal microflora. CGA treatment significantly reduced HFD-induced internal organ weight gain, promoted colon tissue repair, downregulated the expression of inflammatory cytokines, and promoted the accumulation of the tight junction protein. KEGG enrichment analysis of differentially expressed genes, applied to data from the RNA-seq of rat liver tissue, revealed that CGA treatment significantly affected amino acid and lipid metabolism in the liver. Furthermore, CGA decreased the abundance of bacteria belonging to the genera Blautia, Sutterella, and Akkermansia and increased butyric acid levels, which were positively correlated with the abundance of Ruminococcus (butyric acid producer). Moreover, the beneficial changes observed in the HFD group were not as pronounced as those in the CGA treatment group. In summary, CGA can alleviate colitis in HFD-induced obesity through its anti-inflammatory effects associated with changes in gut microbiota composition and an increase in the production of short-chain fatty acids and thus can be used as a potential drug for the treatment of this pathology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.