Abstract

Ether-based electrolyte is beneficial to obtaining good low-temperature performance and high ionic conductivity in potassium ion batteries. However, the dilute ether-based electrolytes usually result in ion-solvent co-intercalation of graphite, poor cycling stability, and hard to withstand high voltage cathodes above 4.0 V. To address the aforementioned issues, an electron-withdrawing group (chloro-substitution) was introduced to regulate the solid-electrolyte interphase (SEI) and enhance the oxidative stability of ether-based electrolytes. The dilute (~0.91 M) chloro-functionalized ether-based electrolyte not only facilitates the formation of homogeneous dual halides-based SEI, but also effectively suppress aluminum corrosion at high voltage. Using this functionalized electrolyte, the K||graphite cell exhibits a stability of 700 cycles, the K||Prussian blue (PB) cell (4.3 V) delivers a stability of 500 cycles, and the PB||graphite full-cell reveals a long stability of 6000 cycles with a high average Coulombic efficiency of 99.98 %. Additionally, the PB||graphite full-cell can operate under a wide temperature range from -5 °C to 45 °C. This work highlights the positive impact of electrolyte functionalization on the electrochemical performance, providing a bright future of ether-based electrolytes application for long-lasting, wide-temperature, and high Coulombic efficiency PIBs and beyond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call