Abstract

Tin‐based perovskite solar cells (TPSCs) have received great attention due to their eco‐friendly properties and high theoretical efficiencies. However, the fast crystallization feature of tin‐based perovskites leads to poor film quality and limits the corresponding device performance. Herein, a chlorofullerene, C60Cl6, with six chlorine attached to the C60 cage, is applied to modulate the crystallization process and passivate grain boundary defects of the perovskite film. The chemical interactions between C60Cl6 and perovskite components retard the transforming process of precursors to perovskite crystals and obtain a high‐quality tin‐based perovskite film. It is also revealed that the C60Cl6 located at the surfaces and grain boundaries can not only passivate the defects but also offer a role in suturing grain boundaries to suppress the detrimental effects of water and oxygen on perovskite films, especially the oxidation of Sn2+ to Sn4+. As a result, the C60Cl6‐based device yields a remarkably improved device efficiency from 10.03% to 13.30% with enhanced stability. This work provides a new strategy to regulate the film quality and stability of TPSCs using functional fullerene materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call