Abstract

Treatment of potato ( Solanum tuberosum L.) with chlorocholine chloride (CCC) applied twice as a foliar spray 25 and 30 days after planting has shown to decrease shoot and stolon growth but increase tuber yield. However, the regulatory role of CCC on translocation of recently fixed photoassimilates into different parts of potato plants has not been fully illustrated. In this study, 14C-isotope labelling technique was used to estimate the photosynthetic capacity and photoassimilate partitioning among leaves, stems, roots + stolons, and tubers of potted potatoes treated with 1.5 g l −1 CCC. CCC treatment significantly increased tuber dry mass but reduced leaf dry mass. CCC-treated leaves had significantly higher chlorophyll and carotenoid contents and assimilated 22.0% more 14CO 2 per leaf dry mass than the controls. Compared with the control, CCC treatment reduced the translocation of 14C-photoassimilates into leaves, stems and roots + stolons but increased that into tubers. CCC-treated leaves exported 14.6% more 14C-photoassimilates into other parts of the plants. In addition, CCC treatment reduced 14C-soluble sugar and 14C-starch accumulation in leaves and stems but enhanced them in tubers and roots + stolons. Collectively, the results indicate that CCC treatment significantly improves the photosynthetic capacity of potato leaves and promotes photoassimilates partitioning into tubers thereby enhancing tuber growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call