Abstract

The impact of decorating Fe, Ru, Rh, and Ir metals upon the sensing capability of a gallium nitride nanotube (GaNNT) in detecting chlorine trifluoride (CT) was scrutinized using the density functionals B3LYP and B97D. The interaction of the pristine GaNNT with CT was a physical adsorption with the sensing response (SR) of approximately 6.9. After decorating the above-mentioned metals on the GaNNT, adsorption energy of CT changed from −5.8 to −18.6, −18.9, −19.4, and −20.1 kcal/mol by decorating the Fe, Ru, Rh, and Ir metals into the GaNNT surface, respectively. Also, the corresponding SR dramatically increased to 39.6, 52.3, 63.8, and 106.6. This shows that the sensitivity of the metal-decorated GaNNT (metal@GaNNT) increased by increasing the atomic number of metals. As energy decomposition analysis revealed, the electrostatic, also known as cation-lone pair interaction, was mostly the nature of the interaction between the CT and metal@GaNNT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call