Abstract
Hypochlorous acid formed by activated neutrophils reacts with amines to produce chloramines. Chloramines vary in stability, reactivity, and cell permeability. We have examined whether chloramine exchange occurs between physiologically important amines or amino acids and if this affects interactions of chloramines with cells. We have demonstrated transchlorination reactions between histamine, glycine, and taurine chloramines by measuring chloramine decay rates with mixtures as well as by mass spectrometry. Kinetic analysis suggested the formation of an intermediate complex with a high K m. Apparent second-order rate constants, determined for concentrations < K m, were 19.4, 23.8, 6.0, and 7.5 M −1 min −1 for glycine chloramine (Gly-Cl) and taurine, Gly-Cl and histamine, histamine chloramine and glycine, and taurine chloramine (Tau-Cl) and glycine, respectively. Thus with 10 mM amine concentrations, half-lives for chloramine exchange are of the order of a few minutes. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity in cells was measured as an indicator of permeability of the chloramines. When endothelial or Jurkat cells were treated in Hanks' buffer, Gly-Cl inhibited GAPDH, whereas Tau-Cl, which does not penetrate the cells, did not. Adding glycine to Tau-Cl brought about inhibition, whereas taurine mitigated the effect of Gly-Cl. For cells in full medium, high chloramine concentrations were needed to inhibit GAPDH because of scavenging by methionine and other constituents. In methionine-free medium, chlorine exchange resulted in GAPDH inhibition by Tau-Cl, whereas Gly-Cl was less effective than in Hanks' buffer. Thus interchange between chloramines occurs readily and modulates their cellular effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.