Abstract

ABSTRACTTo improve chlorine resistance and mitigate the internal concentration polarization (ICP), a membrane surface was tethered with poly(ethylene glycol) methacrylate (PEGMA). Characterization by attenuated total reflection–Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy analysis, and field emission scanning electron microscopy indicated the successful tethering of PEGMA onto the membrane. The antifouling and antichlorine characteristics were assessed in reverse osmosis (RO) and forward osmosis (FO) processes. The water flux increased obviously to 85.00 from 60.00 L m−2 h−1 (LMH) in the RO process; the chlorine stability of the modified membrane was improved. The greatly reduced structural parameters indicated that the ICP of the FO membrane was successfully alleviated; the water flux decreased greatly for the original membrane from 3.40 to 0.01 LMH, whereas it fell only slightly from 10.99 to 9.32 LMH for the modified membrane during synthetic sewage treatment. The ICP was greatly mitigated; the antichlorine performances and the antifouling characteristics drastically improved after grafting with PEGMA. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47406.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call