Abstract

Adsorption of molecular chlorine (Cl2) on intrinsic and B-, Si-, Cr-, Cu-, Fe-, Mn-, Ni-, Ti- and Au-doped graphene was theoretically studied using first-principle approach based on density functional theory in order to develop their potential applications as Cl2 gas sensors. The structural, electronic and magnetic properties of the graphene-molecule adsorption adducts are strongly dependent on the dopants. Cl2 molecule is adsorbed weakly on intrinsic and B-doped graphene; in general, strong chemisorption is observed on Si-, Cr-, Cu-, Fe-, Mn-, Ni-, Ti- and Au-doped graphene. The most stable adsorption geometries, energies, magnetic moments, charge transfers and density of states of these systems are thoroughly discussed. This work reveals that the sensitivity of graphene-based chemical gas sensors for Cl2 can be drastically improved by introducing appropriate dopant, and Ti as well as Au is the best choice among all the dopants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.