Abstract

The use of stable chlorine isotopic signatures (δ(37)Cl) of organochlorine compounds has been suggested as a tool to determine both their origins and transformations in the environment. Here we investigated the δ(37)Cl fractionation of two important pathways for enzymatic natural halogenation: chlorination by chloroperoxidase (CPO) and flavin-dependent halogenases (FDH). Phenolic products of CPO were highly (37)Cl depleted (δ(37)Cl = -12.6 ± 0.9‰); significantly more depleted than all known industrially produced organochlorine compounds (δ(37)Cl = -7 to +6‰). In contrast, four FDH products did not exhibit any observable isotopic shifts (δ(37)Cl = -0.3 ± 0.6‰). We attributed the different isotopic effect to the distinctly different chlorination mechanisms employed by the two enzymes. Furthermore, the δ(37)Cl in bulk organochlorines extracted from boreal forest soils were only slightly depleted in (37)Cl relative to inorganic Cl. In contrast to previous suggestions that CPO plays a key role in production of soil organochlorines, this observation points to the additional involvement of either other chlorination pathways, or that dechlorination of naturally produced organochlorines can neutralize δ(37)Cl shifts caused by CPO chlorination. Overall, this study demonstrates that chlorine isotopic signatures are highly useful to understand sources and cycling of organochlorines in nature. Furthermore, this study presents δ(37)Cl values of FDH products as well of bulk organochlorines extracted from pristine forest soil for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.