Abstract

We report concentrations of Chlorine (Cl) in synthetic wadsleyite (Wd) and ringwoodite (Rw) in the system NaCl–(Mg, Fe)2SiO4 under hydrous and anhydrous conditions. Multi-anvil press experiments were performed under pressures (14–22 GPa) and temperatures (1100–1400 °C) relevant to the transition zone (TZ: 410–670 km depth). Cl and H contents were measured using Particle Induced X-ray Emission (PIXE) and Elastic Recoil Detection Analysis (ERDA) respectively. Results show that Cl content in Rw and Wd is significantly higher than in other nominally anhydrous minerals from the upper mantle (olivine, pyroxene, garnet), with up to 490 ppm Cl in anhydrous Rw, and from 174 to 200 ppm Cl in hydrous Wd and up to 113 ppm Cl in hydrous Rw.These results put constrains on the Cl budget of the deep Earth. Based on these results, we propose that the TZ may be a major repository for major halogen elements in the mantle, where Cl may be concentrated together with H2O and F (see Roberge et al., 2015). Assuming a continuous supply by subduction and a water-rich TZ, we use the concentrations measured in Wd (174 ppm Cl) and in Rw (106 ppm Cl) and we obtain a maximum value for the Cl budget for the bulk silicate Earth (BSE) of 15.1 × 1022 g Cl, equivalent to 37 ppm Cl. This value is larger than the 17 ppm Cl proposed previously by McDonough and Sun (1995) and evidences that the Cl content of the mantle may be higher than previously thought. Comparison of the present results with the budget calculated for F (Roberge et al., 2015) shows that while both elements abundances are probably underestimated for the bulk silicate Earth, their relative abundances are preserved. The BSE is too rich in F with respect to heavy halogen elements to be compatible with a primordial origin from chondrites CI-like (carbonaceous chondrites CC) material only. We thus propose a combination of two processes to explain these relative abundances: a primordial contribution of different chondritic-like materials, including EC-like (enstatite chondrites), possibly followed by a distinct fractionation of F during the Earth differentiation due to its lithophile behavior compared to Cl, Br and I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.